List of Papers (since 2011, all papers are written in English)

  • 2023

    • (48)
      A Red Light-Inducible Copper-Photodeposited All Solid-State Z-Scheme Photocatalyst for Carbon Dioxide Reduction to Methane Using Water as an Electron Donor
      M. Yoda, M. Hirukawa, K. Kuroki, H. Miyashita, C. Hanioka, J. Osaki, T. Takashima, and H. Irie
      ACS Appl. Ener. Mater., 6, 6946-6955 (2023).
      https://doi.org/10.1021/acsaem.3c00420

    2022

    • (47)
      Synthesis of a Gold-Inserted Iron Disilicide and Rutile Titanium Dioxide Heterojunction Photocatalyst via the Vapor−Liquid−Solid Method and Its Water-Splitting Reaction
      K. Akiyama, S. Nojima, Y. Ito, M. Ushiyama, T. Okuda, and H. Irie
      ACS Omega, 7, 38744-38751 (2022).
      https://doi.org/10.1021/acsomega.2c04360

      (46)
      Designs of Composite Photocatalysts for Their Enhanced Performance Based on Photoinduced Charge Transfer
      H. Irie
      J. Ceram. Soc. Jpn., 130, 611-620 (2022).
      http://doi.org/10.2109/jcersj2.22050

      (45)
      Wavelength-Dependent Selective Acceleration of CO2 Reduction and H2 Evolution Using a Plasmonic Gold Nanorod Electrode
      T. Takashima, K. Kitta, and H. Irie
      ACS Appl. Nano Mater., 5, 10973-10979 (2022).
      https://doi.org/10.1021/acsanm.2c02222

      (44)
      Anomalous Photo-Thermoelectric Effects of Platinum-Photodeposited Tungsten Trioxide after Gaschromic Reaction
      C. Hanioka, K. Omura, and H. Irie
      J. Appl. Phys., 131, 185102-1-185102-6 (2022).
      https://doi.org/10.1063/5.0079246

    2021

    • (43)
      Selective Loading of Platinum Cocatalyst onto Zinc Rhodium Oxide in a Silver-Inserted Heterojunction Overall Water-Splitting Photocatalyst Consisting of Zinc Rhodium Oxide and Bismuth Vanadium Oxide
      H. Irie, M. Yoda, T. Takashima, and J. Osaki
      J. Ceram. Soc. Jpn., 129, 453-457 (2021).
      https://doi.org/10.2109/jcersj2.20227

      (42)
      Silver Cocatalyst-Concentration Dependence of Overall Water Splitting Performance over Silver-Inserted Solid-State Heterojunction Photocatalyst Composed of Zinc Rhodium Oxide and Bismuth Vanadium Oxide
      H. Irie, M. Yoda, T. Takashima, and J. Osaki
      Appl. Catal. B: Environ., 284, 119744 (2021).
      https://doi.org/10.1016/j.apcatb.2020.119744

    2020

    • (41)
      Noble Metal Modification of CdS-Covered CuInS2 Electrodes for Improved Photoelectrochemical Activity and Stability
      T. Takashima, Y. Fujishiro, and H. Irie
      Catalysts, 10, 949 (2020).
      https://doi.org/10.3390/catal10090949

      (40)
      Red Light-Inducible Overall Water-Splitting Photocatalyst, Gold-Inserted Zinc Rhodium Oxide and Bismuth Vanadium Oxide Heterojunction, Connected Using Gold Prepared by Sputtering in Ionic Liquid
      M. Yoda, T. Takashima, K. Akiyoshi, T. Torimoto, and H. Irie
      J. Chem. Phys., 153, 014701 (2020).
      https://doi.org/10.1063/5.0010100

      (39)
      Facet-Dependent Activity of Hematite Nanocrystals toward Oxygen Evolution Reaction
      T. Takashima, S. Hemmi, Q. Liu, and H. Irie
      Catal. Sci. Technol., 10, 3748–3754 (2020).
      https://doi.org/10.1039/D0CY00655F

    2019

    • (38)
      Selective Loading of Platinum or Silver Cocatalyst onto a Hydrogen-Evolution Photocatalyst in a Silver-Mediated All Solid-State Z-Scheme System for Enhanced Overall Water Splitting
      J. Osaki, M. Yoda, T. Takashima, and H. Irie
      RSC Adv., 9, 41913–41917 (2019).
      https://doi.org/10.1039/C9RA09421K

      (37)
      Controllable Anomalous n- and p-type Photo-Thermoelectric Effects of Platinum Oxide and Tungsten Trioxide Layers with and without Chromic Reaction
      K. Shimoyama, and H. Irie
      Chem. Mater., 31, 6202–6209 (2019).
      https://doi.org/10.1021/acs.chemmater.9b02015

      (36)
      Zinc Rhodium Oxide and Its Possibility as a Constituent Photocatalyst for Carbon Dioxide Reduction using Water as an Electron Source
      S. Higuchi, T. Takashima, J. Osaki, and H. Irie
      Cat. Today, 335, 402–408 (2019).
      https://doi.org/10.1016/j.cattod.2019.01.029

      (35)
      Induction of Concerted Proton-Coupled Electron Transfer during Oxygen Evolution on Hematite Using Lanthanum Oxide as a Solid Proton Acceptor
      T. Takashima, K. Ishikawa, H. Irie
      ACS Catal., 9, 9212–9215 (2019).
      https://doi.org/10.1021/acscatal.9b02936

      (34)
      Visible-Light-Induced Water Splitting on Hierarchically Constructed Z-Scheme Photocatalyst Composed of Zinc Rhodium Oxide and Bismuth Vanadate
      T. Takashima, N. Moriyama, Y. Fujishiro, J. Osaki, S. Takeuchi, B. Ohtani, H. Irie
      J. Mater. Chem. A, 7, 10372–10378 (2019).
      https://doi.org/10.1039/C8TA12316K

      (33)
      Electrochemical Reduction of Carbon Dioxide to Formate on Palladium-Copper Alloy Nanoparticulate Electrode
      T. Takashima, T. Suzuki, H. Irie
      Electrochemistry, 87, 134–138 (2019).
      https://doi.org/10.5796/electrochemistry.18-00086

      (32)
      Cocatalyst Modification of Niobium-Substituted Silver Tantalate Photocatalyst for Enhanced Solar Water-Splitting Activity
      T. Takashima, T. Sano, H. Irie
      Int. J. Hydrogen Energy, 44, 23600–23609 (2019).
      https://doi.org/10.1016/j.ijhydene.2019.07.077

    2018

    • (31)
      Facile Synthesis of a Red Light-Inducible Overall Water-Splitting Photocatalyst using Gold as a Solid-State Electron Mediator
      K. Kamijyo, T. Takashima, M. Yoda, J. Osaki, and H. Irie
      Chem. Commun, 54, 7999–8002 (2018).
      https://doi.org/10.1039/C8CC02942C

    2017

    • (30)
      Synthesis and Photocatalytic Properties of Iron Disilicide/SiC Composite Powder
      K. Akiyama, Y. Motoizumi, T. Okuda, H. Funakubo, H. Irie, and Y. Matsumoto
      MRS Adv., 2, 471–476 (2017).
      https://doi.org/10.1557/adv.2017.221

      (29)
      Silver-Inserted Heterojunction Photocatalyst Consisting of Zinc Rhodium Oxide and Silver Antimony Oxide for Overall Pure-Water Splitting under Visible Light
      Y. Hara, T. Takashima, R. Kobayashi, S. Abeyrathna, B. Ohtani, and H. Irie
      Appl. Catal. B, Environ., 209, 663–668 (2017).
      https://doi.org/10.1016/j.apcatb.2017.03.040

      (28)
      Element Strategy of Oxygen Evolution Electrocatalysis Based on In Situ Spectroelectrochemistry
      H. Ooka, T. Takashima, A. Yamaguchi, T. Hayashi, R. Nakamura
      Chem. Commun., 53, 7149–7161 (2017).
      https://doi.org/10.1039/C7CC02204B

      (27)
      Electrochemical Carbon Dioxide Reduction on Copper-Modified Palladium Nanoparticles Synthesized by Underpotential Deposition
      T. Takashima, T. Suzuki, H. Irie
      Elechtrochim. Acta, 229, 415–421 (2017).
      https://doi.org/10.1016/j.electacta.2017.01.171

      (26)
      Enhancement of Oxygen Evolution Activity of Ruddlesden-Popper-Type Strontium Ferrite by Stabilizing Fe4+
      T. Takashima, K. Ishikawa, H. Irie
      J. Mater. Sci. Chem. Eng., 5, 45–55 (2017).
      https://doi.org/10.4236/msce.2017.54005

    2016

    • (25)
      A Heterojunction Photocatalyst Composed of Zinc Rhodium Oxide, Single Crystal-Derived Bismuth Vanadium Oxide, and Silver for Overall Pure-Water Splitting under Visible Light up to 740 nm
      R. Kobayashi, T. Takashima, S. Tanigawa, S. Takeuchi, B. Ohtani, and H. Irie
      Phys. Chem. Chem. Phys., 18, 27693–28378 (2016).
      https://doi.org/10.1039/C6CP02903E

      (24)
      Photo- and gas-tuned, reversible thermoelectric properties and anomalous photo-thermoelectric effects of platinum-loaded tungsten trioxide
      K. Suzuki, T. Watanabe, H. Kakemoto, and H. Irie
      J. Appl. Phys., 119, 245109/1–245109/7 (2016).
      https://doi.org/10.1063/1.4954874

      (23)
      Metal–Organic Chemical Vapor Deposition Growth of β-FeSi2/Si Composite Powder via Vapor-Liquid-Solid Method and Its Photocatalytic Properties
      K. Akiyama, Y. Motoizumi, H. Funakubo, H. Irie, and Y. Matsumoto
      Jpn. J. Appl. Phys., 55, 06HC02/1–06HC02/4 (2016).
      https://doi.org/10.7567/JJAP.55.06HC02

      (22)
      Silver-Inserted Zinc Rhodium Oxide and Bismuth Vanadium Oxide Heterojunction Photocatalyst for Overall Pure-Water Splitting under Red Light
      R. Kobayashi, K. Kurihara, T. Takashima, B. Ohtani, and H. Irie
      J. Mater. Chem. A, 4, 3061–3067 (2016).
      https://doi.org/10.1039/C5TA08468G

      (21)
      Visible-Light-Sensitive Two-Step Overall Water-Splitting Based on Band Structure Control of Titanium Dioxide
      S. Tanigawa, and H. Irie
      Appl. Catal. B, Environ., 180, 1–5 (2016).
      https://doi.org/10.1016/j.apcatb.2015.06.008

      (20)
      Improvement of Photocatalytic Water Splitting of AgTaO3 by Photodeposited Pt and Co-oxide Nanoclusters
      T. Takashima, T. Sano, H. Irie
      Electrochemistry, 84, 784–788 (2016).
      https://doi.org/10.5796/electrochemistry.84.784

      (19)
      Acceleration of Electrocatalytic CO2 Reduction by Adding Proton-Coupled Electron Transfer Inducing Compounds
      T. Takashima, T. Suzuki, H. Irie
      J. Photonics Energy, 7, 012005 (2016).
      https://doi.org/10.1117/1.JPE.7.012005

      (18)
      Efficient Oxygen Evolution on Hematite at Neutral pH Enabled by Proton-Coupled Electron Transfer
      T. Takashima, K. Ishikawa, H. Irie
      Chem. Commun., 52, 14015–14018 (2016).
      https://doi.org/10.1039/C6CC08379J

      (17)
      Detection of Intermediate Species in Oxygen Evolution on Hematite Electrodes Using Spectroelectrochemical Measurements
      T. Takashima, K. Ishikawa, H. Irie
      J. Phys. Chem. C, 120, 24827–24834 (2016).
      https://doi.org/10.1021/acs.jpcc.6b07978

    2015

    • (16)
      Niobium(V)Oxide with Added Silevr as a Thermoelectric Material Prepared by Spark Plasma Sintering
      T. Kawano, H. Kakemoto, and H. Irie
      Mater. Lett., 156, 94-97 (2015).
      https://doi.org/10.1016/j.matlet.2015.04.148

      (15)
      Photocatalytic Hydrogen Evolution over β-Iron Silicide under Infrared-Light Irradiation
      M. Yoshimizu, R. Kobayashi, M. Saegusa, T. Takashima, H. Funakubo, K. Akiyama, Y. Matsumoto, and H. Irie
      Chem. Commun., 51, 2818–2820 (2015).
      https://doi.org/10.1039/C4CC08093A

      (14)
      Development of Optically Transparent Water Oxidation Catalysts Using Manganese Pyrophosphate Compounds
      T. Takashima, Y. Hotori, H. Irie
      J. Photochem. Photobiol. B, 152, 139–145 (2015).
      https://doi.org/10.1016/j.jphotobiol.2014.12.022

    2014

    • (13)
      Photo-Controllable Thermoelectric Properties with Reversibility and Photo-Thermoelectric Effects of Tungsten Trioxide Accompanied by Its Photochromic Phenomenon
      C. Azuma, T. Kawano, H. Kakemoto, and H. Irie
      J. Appl. Phys., 116, 173502/1–173502/6 (2014).
      https://doi.org/10.1063/1.4900852
      (12)
      Silver-Inserted Hetero-Junction Photocatalysts for Z-Scheme Overall Pure-Water Splitting under Visible-Light Irradiation
      R. Kobayashi, S. Tanigawa, T. Takashima, B. Ohtani, and H. Irie
      J. Phys. Chem. C, 118, 22450–22456 (2014).
      https://doi.org/10.1021/jp5069973
      (11)
      Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects
      R. Asahi, T. Morikawa, H. Irie, and T. Ohwaki
      Chem. Rev., 114, 9824–9852 (2014).
      https://doi.org/10.1021/cr5000738

    2013

    • (10)
      Visible-Light Induced Overall Water-Splitting Photocatalyst: Conduction Band-Controlled Silver Tantalate
      L. Ni, M. Tanabe, and H. Irie
      Chem. Commun., 49, 10094–10096 (2013).
      https://doi.org/10.1039/C3CC45222K
      (9)
      Structural and Thermoelectric Properties of Rare-Earth Substituted Sr3Fe2O7
      H. Kakemoto, M. Ishikawa, J. Yazaki, and H. Irie
      Mater. Trans., 54, 1986–1992 (2013).
      https://doi.org/10.2320/matertrans.E-M2013821
      (8)
      Hydrothermal Synthesis of Visible Light-Sensitive Conduction Band-Controlled Tungsten-Doped Titanium Dioxide Photocatalysts with Copper Ion-Grafts
      L. Ni, T. Kitta, N. Kumagai, B. Ohtani, and H. Irie
      J. Ceram. Soc. Jpn., 121, 563–567 (2013).
      https://doi.org/10.2109/jcersj2.121.563
      (7)
      An Alkaline-Resistant Titanium Dioxide Thin Film Displaying Visible-Light Induced Super-Hydrophilicity Initiated by Interfacial Electron Transfer
      T. Taguchi, L. Ni, and H. Irie
      Langmuir, 29, 4908–4914 (2013).
      https://doi.org/10.1021/la400556t
      (6)
      Magnetic and Photocatalytic Properties of n- and p-type ZnFe2O4 Particles Synthesized using Ultrasonic Spray Pyrolysis
      T. Nunome, H. Irie, N. Sakamoto, O. Sakurai, K. Shinozaki, H. Suzuki, and N. Wakiya
      J. Ceram. Soc. Jpn., 121, 26–30 (2013).
      https://doi.org/10.2109/jcersj2.121.26

    2012

    • (5)
      Hydrogen and Oxygen Evolution Photocatalysts Synthesized from Strontium Titanate by Controlled Doping and Their Performance in Two-Step Overall Water Splitting under Visible Light
      S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani, and H. Irie
      J. Phys. Chem. C, 116, 17458–17463 (2012).
      https://doi.org/10.1021/jp306315r
      (4)
      Synthesis and Thermoelectric Properties of the Novel A-site Deficient Zn0.5Rh2O4 Compound
      Y. Nakamura, H. Kakemoto, S. Nishiyama, and H. Irie
      J. Solid State Chem., 192, 23–27 (2012).
      https://doi.org/10.1016/j.jssc.2012.03.054
      (3)
      Band Structure Controls of SrTiO3 towards Two-Step Overall Water Splitting
      S. Hara, and H. Irie
      Appl. Catal. B: Environ., 115–116, 330–335 (2012).
      https://doi.org/10.1016/j.apcatb.2011.12.042
      (2)
      Visible-Light Sensitive Hydrogen Evolution Photocatalyst ZnRh2O4
      Y. Takimoto, T. Kitta, and H. Irie
      Int. J. Hydrogen Energy, 37, 134–137 (2012).
      https://doi.org/10.1016/j.ijhydene.2011.09.098

    2011

    • (1)
      Visible-Light-Sensitive Water Splitting Photocatalyst Composed of Rh3+ in a 4d6 Electronic Configuration, Rh3+-Doped ZnGa2O4
      N. Kumagai, L. Ni, and H. Irie
      Chem. Commun., 47, 1884–1887 (2011).
      https://doi.org/10.1039/C0CC03739G